Merging multiple longitudinal studies with study-specific missing covariates: A joint estimating function approach.

نویسندگان

  • Fei Wang
  • Peter X-K Song
  • Lu Wang
چکیده

Merging multiple datasets collected from studies with identical or similar scientific objectives is often undertaken in practice to increase statistical power. This article concerns the development of an effective statistical method that enables to merge multiple longitudinal datasets subject to various heterogeneous characteristics, such as different follow-up schedules and study-specific missing covariates (e.g., covariates observed in some studies but missing in other studies). The presence of study-specific missing covariates presents great statistical methodology challenge in data merging and analysis. We propose a joint estimating function approach to addressing this challenge, in which a novel nonparametric estimating function constructed via splines-based sieve approximation is utilized to bridge estimating equations from studies with missing covariates to those with fully observed covariates. Under mild regularity conditions, we show that the proposed estimator is consistent and asymptotically normal. We evaluate finite-sample performances of the proposed method through simulation studies. In comparison to the conventional multiple imputation approach, our method exhibits smaller estimation bias. We provide an illustrative data analysis using longitudinal cohorts collected in Mexico City to assess the effect of lead exposures on children's somatic growth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاربرد مدل توأم بقا و داده های طولی در بیماران دیالیز صفاقی

Background and Aim: In many medical studies along with longitudinal data, which are repeatedly measured during a certain time period, survival data are also recorded. In these situations, using models such as, mixed effects models or GEE method for longitudinal data and Cox model for survival data, are not appropriate because some necessary assumptions are not met. Instead, the joint models hav...

متن کامل

چند رویکرد برخورد با مقادیر گمشده‌ متغیرهای کمی و بررسی اثر آنها بر نتایج حاصل از یک کارآزمایی‌ بالینی

Background and Objectives: A major challenge that affects the longitudinal studies is the problem of missing data. Missing in the data may result in the loss of part of the information which reduces the accuracy of the estimator and obtain the results will be biased and inaccurate. Therefore, it is necessary to evaluate the missing data mechanism from a longitudinal research and to consider thi...

متن کامل

Marginal Analysis of A Population-Based Genetic Association Study of Quantitative Traits with Incomplete Longitudinal Data

A common study to investigate gene-environment interaction is designed to be longitudinal and population-based. Data arising from longitudinal association studies often contain missing responses. Naive analysis without taking missingness into account may produce invalid inference, especially when the missing data mechanism depends on the response process. To address this issue in the ana...

متن کامل

Quadratic inference function approach to merging longitudinal studies: validation and joint estimation

Merging data from multiple studies has been widely adopted in biomedical research. In this paper, we consider two major issues related to merging longitudinal datasets. We first develop a rigorous hypothesis testing procedure to assess the validity of data merging, and then propose a flexible joint estimation procedure that enables us to analyse merged data and to account for different within-s...

متن کامل

Bayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data

A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biometrics

دوره 71 4  شماره 

صفحات  -

تاریخ انتشار 2015